Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 70, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454524

RESUMO

BACKGROUND: Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. METHOD: To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2, and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). RESULTS: Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. CONCLUSION: Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo
2.
Physiol Rev ; 104(2): 659-725, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589393

RESUMO

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.


Assuntos
Insuficiência Cardíaca , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Insuficiência Cardíaca/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia
3.
Stem Cell Res Ther ; 14(1): 335, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981698

RESUMO

BACKGROUND: The metabolic reprogramming of mesenchymal stem/stromal cells (MSC) favoring glycolysis has recently emerged as a new approach to improve their immunotherapeutic abilities. This strategy is associated with greater lactate release, and interestingly, recent studies have proposed lactate as a functional suppressive molecule, changing the old paradigm of lactate as a waste product. Therefore, we evaluated the role of lactate as an alternative mediator of MSC immunosuppressive properties and its contribution to the enhanced immunoregulatory activity of glycolytic MSCs. MATERIALS AND METHODS: Murine CD4+ T cells from C57BL/6 male mice were differentiated into proinflammatory Th1 or Th17 cells and cultured with either L-lactate, MSCs pretreated or not with the glycolytic inductor, oligomycin, and MSCs pretreated or not with a chemical inhibitor of lactate dehydrogenase A (LDHA), galloflavin or LDH siRNA to prevent lactate production. Additionally, we validated our results using human umbilical cord-derived MSCs (UC-MSCs) in a murine model of delayed type 1 hypersensitivity (DTH). RESULTS: Our results showed that 50 mM of exogenous L-lactate inhibited the proliferation rate and phenotype of CD4+ T cell-derived Th1 or Th17 by 40% and 60%, respectively. Moreover, the suppressive activity of both glycolytic and basal MSCs was impaired when LDH activity was reduced. Likewise, in the DTH inflammation model, lactate production was required for MSC anti-inflammatory activity. This lactate dependent-immunosuppressive mechanism was confirmed in UC-MSCs through the inhibition of LDH, which significantly decreased their capacity to control proliferation of activated CD4+ and CD8+ human T cells by 30%. CONCLUSION: These findings identify a new MSC immunosuppressive pathway that is independent of the classical suppressive mechanism and demonstrated that the enhanced suppressive and therapeutic abilities of glycolytic MSCs depend at least in part on lactate production.


Assuntos
Ácido Láctico , Células-Tronco Mesenquimais , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Imunossupressores , Diferenciação Celular
4.
Front Cell Dev Biol ; 11: 1123299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215080

RESUMO

Objective: Cartilage, as the majority of adult mammalian tissues, has limited regeneration capacity. Cartilage degradation consecutive to joint injury or aging then leads to irreversible joint damage and diseases. In contrast, several vertebrate species such as the zebrafish have the remarkable capacity to spontaneously regenerate skeletal structures after severe injuries. The objective of our study was to test the regenerative capacity of Meckel's cartilage (MC) upon mechanical injury in zebrafish and to identify the mechanisms underlying this process. Methods and Results: Cartilage regenerative capacity in zebrafish larvae was investigated after mechanical injuries of the lower jaw MC in TgBAC(col2a1a:mCherry), to visualize the loss and recovery of cartilage. Confocal analysis revealed the formation of new chondrocytes and complete regeneration of MC at 14 days post-injury (dpi) via chondrocyte cell cycle re-entry and proliferation of pre-existing MC chondrocytes near the wound. Through expression analyses, we showed an increase of nrg1 expression in the regenerating lower jaw, which also expresses Nrg1 receptors, ErbB3 and ErbB2. Pharmacological inhibition of the ErbB pathway and specific knockdown of Nrg1 affected MC regeneration indicating the pivotal role of this pathway for cartilage regeneration. Finally, addition of exogenous NRG1 in an in vitro model of osteoarthritic (OA)-like chondrocytes induced by IL1ß suggests that Nrg1/ErbB pathway is functional in mammalian chondrocytes and alleviates the increased expression of catabolic markers characteristic of OA-like chondrocytes. Conclusion: Our results show that the Nrg1/ErbB pathway is required for spontaneous cartilage regeneration in zebrafish and is of interest to design new therapeutic approaches to promote cartilage regeneration in mammals.

5.
Stem Cell Res Ther ; 14(1): 12, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694226

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are multipotent cells with strong tissue repair and immunomodulatory properties. Due to their ability to repress pathogenic immune responses, and in particular T cell responses, they show therapeutic potential for the treatment of autoimmune diseases, organ rejection and graft versus host disease. MSCs have the remarkable ability to export their own mitochondria to neighboring cells in response to injury and inflammation. However, whether mitochondrial transfer occurs and has any role in the repression of CD4+ Th1 responses is unknown. METHODS AND RESULTS: In this report we have utilized CD4+ T cells from HNT TCR transgenic mice that develop Th1-like responses upon antigenic stimulation in vitro and in vivo. Allogeneic bone marrow-derived MSCs reduced the diabetogenic potential of HNT CD4+ T cells in vivo in a transgenic mouse model of disease. In co-culture experiments, we have shown that MSCs were able to reduce HNT CD4+ T cell expansion, expression of key effector markers and production of the effector cytokine IFNγ after activation. This was associated with the ability of CD4+ T cells to acquire mitochondria from MSCs as evidenced by FACS and confocal microscopy. Remarkably, transfer of isolated MSC mitochondria to CD4+ T cells resulted in decreased T cell proliferation and IFNγ production. These effects were additive with those of prostaglandin E2 secreted by MSCs. Finally, we demonstrated that both co-culture with MSCs and transfer of isolated MSC mitochondria prevent the upregulation of T-bet, the master Th1 transcription factor, on activated CD4+ T cells. CONCLUSION: The present study demonstrates that transfer of MSC mitochondria to activated CD4+ T cells results in the suppression of Th1 responses in part by downregulating T-bet expression. Furthermore, our studies suggest that MSC mitochondrial transfer might represent a general mechanism of MSC-dependent immunosuppression.


Assuntos
Linfócitos T CD4-Positivos , Células-Tronco Mesenquimais , Mitocôndrias , Células Th1 , Animais , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Linfócitos T Reguladores , Células Th17 , Células Th1/metabolismo
6.
Stem Cells Int ; 2022: 5494749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561277

RESUMO

Background: Mesenchymal stem/stromal cells (MSCs) have been widely used for their therapeutic properties in many clinical applications including osteoarthritis. Despite promising preclinical results showing the ability of MSC to reduce the clinical severity of osteoarthritis (OA) in experimental animal models, the benefits of intra-articular injection of MSC in OA patients are limited to the short term. In this regard, it is anticipated that improving the properties of MSC may collectively enhance their long-term beneficial effects on OA. Methods and Results: Recently, we have shown that PPARß/δ inhibition using a commercially available antagonist in murine MSC increases their immunoregulatory potential in vitro as well as their therapeutic potential in an experimental murine arthritis model. Here, we relied on an innovative strategy to inhibit PPARß/δ:NF-κB TF65 subunit interaction in human MSC by designing and synthesizing an interfering peptide, referred to PP11. Through RT-qPCR experiments, we evidenced that the newly synthesized PP11 peptide reduced the expression level of PDK4, a PPARß/δ target gene, but did not modify the expression levels of ACOX1 and CPT1A, PPARα target genes, and FABP4, a PPARγ target gene compared with untreated human MSC. Moreover, we showed that human MSCs pretreated with PP11 exhibit a significantly higher capacity to inhibit the proliferation of activated PBMC and to decrease the frequency of M1-like macrophages. Conclusions: We designed and synthesized an interfering peptide that potently and specifically blocks PPARß/δ activity with concomitant enhancement of MSC immunoregulatory properties.

7.
Curr Protoc ; 2(11): e596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36342311

RESUMO

Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability in the adult population. There is a significant unmet medical need for the development of effective pharmacological therapies for the treatment of OA. In addition to spontaneously occurring animal models of OA, many experimental animal models have been developed to provide insights into mechanisms of pathogenesis and progression. Many of these animal models are also being used in the drug development pipeline. Here, we provide an overview of commonly used and emerging preclinical small animal models of OA and highlight the strengths and limitations of small animal models in the context of translational drug development. There is limited information in the published literature regarding the technical reliability of these small animal models and their ability to accurately predict clinical drug development outcomes. The cost and complexity of the available models however is an important consideration for pharmaceutical companies, biotechnology startups, and contract research organizations wishing to incorporate preclinical models in target validation, discovery, and development pipelines. Further considerations relevant to industry include timelines, methods of induction, the key issue of reproducibility, and appropriate outcome measures needed to objectively assess outcomes of experimental therapeutics. Preclinical small animal models are indispensable tools that will shine some light on the pathogenesis of OA and its molecular endotypes in the context of drug development. This paper will focus on small animal models used in preclinical OA research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Assuntos
Artrite Experimental , Osteoartrite , Animais , Reprodutibilidade dos Testes , Osteoartrite/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Desenvolvimento de Medicamentos , Modelos Animais de Doenças
9.
Theranostics ; 12(8): 3995-4009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664055

RESUMO

Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Citocinas/metabolismo , Lactatos/metabolismo , Macrófagos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
10.
Stem Cell Res Ther ; 13(1): 167, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461240

RESUMO

BACKGROUND: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARß/δ (Peroxisome proliferator-activated receptors ß/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARß/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARß/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. OBJECTIVES: The aim of this study was to investigate the role of PPARß/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction. METHODS AND RESULTS: Naïve MSC and MSC pharmacologically activated or inhibited for PPARß/δ were challenged with H2O2. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARß/δ agonist GW0742 versus naïve MSC. In addition, PPARß/δ-priming allowed to reveal the anti-apoptotic effect of MSC on cardiomyocytes and endothelial cells in vitro. When injected during reperfusion, in an ex vivo heart model of myocardial infarction, 3.75 × 105 PPARß/δ-primed MSC/heart provided the same cardioprotective efficiency than 7.5 × 105 naïve MSC, identified as the optimal dose in our experimental model. This enhanced short-term cardioprotective effect was associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 h of reperfusion. By contrast, PPARß/δ inhibition in MSC before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. CONCLUSION: Altogether these results revealed that PPARß/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARß/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the therapeutic injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , PPAR delta , PPAR beta , Animais , Células Endoteliais/metabolismo , Peróxido de Hidrogênio , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Tiazóis
11.
Front Immunol ; 13: 838425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401552

RESUMO

The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.


Assuntos
Infecções por Mycobacterium , Mycobacterium marinum , Animais , Macrófagos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
12.
Stem Cell Res Ther ; 13(1): 7, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012660

RESUMO

BACKGROUND: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. METHODS: The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. RESULTS: Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. CONCLUSIONS: Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs.


Assuntos
Células-Tronco Adultas , Células-Tronco Mesenquimais , Proliferação de Células , Técnicas de Cocultura , Humanos , Ativação Linfocitária
13.
Nat Commun ; 12(1): 6336, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732706

RESUMO

Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC.


Assuntos
Nadadeiras de Animais/metabolismo , Genes erbB/genética , Macrófagos/metabolismo , Crista Neural/metabolismo , Neuregulina-1/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva , Neuregulina-1/genética , Regeneração/genética , Transdução de Sinais/genética , Células-Tronco , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Front Immunol ; 12: 768771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790203

RESUMO

Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs' therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.


Assuntos
Artrite Reumatoide/terapia , Vesículas Extracelulares/fisiologia , Transplante de Células-Tronco Mesenquimais , MicroRNAs/fisiologia , Osteoartrite/terapia , Artrite Reumatoide/etiologia , Humanos , Osteoartrite/etiologia , Fator de Crescimento Transformador beta/fisiologia
15.
Front Cell Dev Biol ; 9: 718938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604219

RESUMO

Osteoarthritis (OA), the most common degenerative and inflammatory joint disorder, is multifaceted. Indeed, OA characteristics include cartilage degradation, osteophytes formation, subchondral bone changes, and synovium inflammation. The difficulty in discovering new efficient treatments for OA patients up to now comes from the adoption of monotherapy approaches targeting either joint tissue repair/catabolism or inflammation to address the diverse components of OA. When satisfactory, these approaches only provide short-term beneficial effects, since they only result in the repair and not the full structural and functional reconstitution of the damaged tissues. In the present review, we will briefly discuss the current therapeutic approaches used to repair the damaged OA cartilage. We will highlight the results obtained with cell-based products in clinical trials and demonstrate how the current strategies result in articular cartilage repair showing restricted early-stage clinical improvements. In order to identify novel therapeutic targets and provide to OA patients long-term clinical benefits, herein, we will review the basis of the regenerative process. We will focus on macrophages and their ambivalent roles in OA development and tissue regeneration, and review the therapeutic strategies to target the macrophage response and favor regeneration in OA.

16.
Front Cardiovasc Med ; 8: 681002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616778

RESUMO

Myocardial infarction ranks first for the mortality worldwide. Because the adult heart is unable to regenerate, fibrosis develops to compensate for the loss of contractile tissue after infarction, leading to cardiac remodeling and heart failure. Adult mesenchymal stem cells (MSC) regenerative properties, as well as their safety and efficacy, have been demonstrated in preclinical models. However, in clinical trials, their beneficial effects are controversial. In an experimental model of arthritis, we have previously shown that PPARß/δ deficiency enhanced the therapeutic effect of MSC. The aim of the present study was to compare the therapeutic effects of wild-type MSC (MSC) and MSC deficient for PPARß/δ (KO MSC) perfused in an ex vivo mouse model of ischemia-reperfusion (IR) injury. For this purpose, hearts from C57BL/6J mice were subjected ex vivo to 30 min ischemia followed by 1-h reperfusion. MSC and KO MSC were injected into the Langendorff system during reperfusion. After 1 h of reperfusion, the TTC method was used to assess infarct size. Coronary effluents collected in basal condition (before ischemia) and after ischemia at 1 h of reperfusion were analyzed for their cytokine profiles. The dose-response curve for the cardioprotection was established ex vivo using different doses of MSC (3.105, 6.105, and 24.105 cells/heart) and the dose of 6.105 MSC was found to be the optimal concentration. We showed that the cardioprotective effect of MSC was PPARß/δ-dependent since it was lost using KO MSC. Moreover, cytokine profiling of the coronary effluents collected in the eluates after 60 min of reperfusion revealed that MSC treatment decreases CXCL1 chemokine and interleukin-6 release compared with untreated hearts. This anti-inflammatory effect of MSC was also observed when hearts were treated with PPARß/δ-deficient MSC. In conclusion, our study revealed that the acute cardioprotective properties of MSC in an ex vivo model of IR injury, assessed by a decreased infarct size at 1 h of reperfusion, are PPARß/δ-dependent but not related to their anti-inflammatory effects.

17.
Front Immunol ; 12: 707856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335621

RESUMO

Several infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation. Tissue lesions in mammals, commonly studied under non-infectious conditions, trigger cell death at the site of the injury, as well as the production of danger signals favouring the massive recruitment of immune cells, particularly macrophages. Macrophages are also of paramount importance in infected injuries, characterized by the presence of pathogenic microorganisms, where they must respond to both infection and tissue damage. In this review, we compare the processes implicated in the tissue repair of non-infected versus infected injuries of two organs, the skeletal muscles and the lungs, focusing on the primary role of macrophages. We discuss also the negative impact of infection on the macrophage responses and the possible routes of investigation for new regenerative therapies to improve the recovery state as seen with COVID-19 patients.


Assuntos
COVID-19/imunologia , Macrófagos Alveolares/fisiologia , SARS-CoV-2/fisiologia , Remodelação das Vias Aéreas , Animais , Humanos , Infecções , Mamíferos , Regeneração , Cicatrização
18.
Front Immunol ; 12: 707824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367168

RESUMO

The future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days. Recent studies have also emphasized the crucial role of distinct macrophage subpopulations in tissue regeneration, contributing to the early phases of inflammation and promoting tissue repair and regeneration in late stages once inflammation is resolved. However, while most studies were conducted under non-infectious conditions, this situation does not necessarily reflect all the complexities of the interactions associated with injury often involving entry of pathogenic microorganisms. There is emerging evidence that the presence of infectious pathogens can largely influence and modulate the host immune response and the regenerative processes, which is sometimes more representative of the true complexities underlying regenerative mechanics. Herein, we present the current knowledge regarding the paths involved in the repair of non-infected and infected wounds using the zebrafish model.


Assuntos
Doenças dos Peixes , Infecções , Macrófagos , Regeneração , Peixe-Zebra , Animais
19.
Front Cell Dev Biol ; 9: 604756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277596

RESUMO

Murphy Roths Large (MRL) mice possess outstanding capacity to regenerate several tissues. In the present study, we investigated whether this regenerative potential could be associated with the intrinsic particularities possessed by their mesenchymal stem cells (MSCs). We demonstrated that MSCs derived from MRL mice (MRL MSCs) display a superior chondrogenic potential than do C57BL/6 MSC (BL6 MSCs). This higher chondrogenic potential of MRL MSCs was associated with a higher expression level of pyrroline-5-carboxylate reductase 1 (PYCR1), an enzyme that catalyzes the biosynthesis of proline, in MRL MSCs compared with BL6 MSCs. The knockdown of PYCR1 in MRL MSCs, using a specific small interfering RNA (siRNA), abolishes their chondrogenic potential. Moreover, we showed that PYCR1 silencing in MRL MSCs induced a metabolic switch from glycolysis to oxidative phosphorylation. In two in vitro chondrocyte models that reproduce the main features of osteoarthritis (OA) chondrocytes including a downregulation of chondrocyte markers, a significant decrease of PYCR1 was observed. A downregulation of chondrocyte markers was also observed by silencing PYCR1 in freshly isolated healthy chondrocytes. Regarding MSC chondroprotective properties on chondrocytes with OA features, we showed that MSCs silenced for PYCR1 failed to protect chondrocytes from a reduced expression of anabolic markers, while MSCs overexpressing PYCR1 exhibited an increased chondroprotective potential. Finally, using the ear punch model, we demonstrated that MRL MSCs induced a regenerative response in non-regenerating BL6 mice, while BL6 and MRL MSCs deficient for PYCR1 did not. In conclusion, our results provide evidence that MRL mouse regenerative potential is, in part, attributed to its MSCs that exhibit higher PYCR1-dependent glycolytic potential, differentiation capacities, chondroprotective abilities, and regenerative potential than BL6 MSCs.

20.
Front Immunol ; 12: 624746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149687

RESUMO

Mesenchymal stem cells (MSCs) are multipotent adult stromal cells widely studied for their regenerative and immunomodulatory properties. They are capable of modulating macrophage plasticity depending on various microenvironmental signals. Current studies have shown that metabolic changes can also affect macrophage fate and function. Indeed, changes in the environment prompt phenotype change. Therefore, in this review, we will discuss how MSCs orchestrate macrophage's metabolic plasticity and the impact on their function. An improved understanding of the crosstalk between macrophages and MSCs will improve our knowledge of MSC's therapeutic potential in the context of inflammatory diseases, cancer, and tissue repair processes in which macrophages are pivotal.


Assuntos
Comunicação Celular , Plasticidade Celular , Reprogramação Celular , Metabolismo Energético , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Microambiente Celular , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...